You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
140 lines
3.7 KiB
140 lines
3.7 KiB
import {asin, atan2, cos, degrees, epsilon, epsilon2, radians, sin, sqrt} from "./math"; |
|
import noop from "./noop"; |
|
import stream from "./stream"; |
|
|
|
var W0, W1, |
|
X0, Y0, Z0, |
|
X1, Y1, Z1, |
|
X2, Y2, Z2, |
|
lambda00, phi00, // first point |
|
x0, y0, z0; // previous point |
|
|
|
var centroidStream = { |
|
sphere: noop, |
|
point: centroidPoint, |
|
lineStart: centroidLineStart, |
|
lineEnd: centroidLineEnd, |
|
polygonStart: function() { |
|
centroidStream.lineStart = centroidRingStart; |
|
centroidStream.lineEnd = centroidRingEnd; |
|
}, |
|
polygonEnd: function() { |
|
centroidStream.lineStart = centroidLineStart; |
|
centroidStream.lineEnd = centroidLineEnd; |
|
} |
|
}; |
|
|
|
// Arithmetic mean of Cartesian vectors. |
|
function centroidPoint(lambda, phi) { |
|
lambda *= radians, phi *= radians; |
|
var cosPhi = cos(phi); |
|
centroidPointCartesian(cosPhi * cos(lambda), cosPhi * sin(lambda), sin(phi)); |
|
} |
|
|
|
function centroidPointCartesian(x, y, z) { |
|
++W0; |
|
X0 += (x - X0) / W0; |
|
Y0 += (y - Y0) / W0; |
|
Z0 += (z - Z0) / W0; |
|
} |
|
|
|
function centroidLineStart() { |
|
centroidStream.point = centroidLinePointFirst; |
|
} |
|
|
|
function centroidLinePointFirst(lambda, phi) { |
|
lambda *= radians, phi *= radians; |
|
var cosPhi = cos(phi); |
|
x0 = cosPhi * cos(lambda); |
|
y0 = cosPhi * sin(lambda); |
|
z0 = sin(phi); |
|
centroidStream.point = centroidLinePoint; |
|
centroidPointCartesian(x0, y0, z0); |
|
} |
|
|
|
function centroidLinePoint(lambda, phi) { |
|
lambda *= radians, phi *= radians; |
|
var cosPhi = cos(phi), |
|
x = cosPhi * cos(lambda), |
|
y = cosPhi * sin(lambda), |
|
z = sin(phi), |
|
w = atan2(sqrt((w = y0 * z - z0 * y) * w + (w = z0 * x - x0 * z) * w + (w = x0 * y - y0 * x) * w), x0 * x + y0 * y + z0 * z); |
|
W1 += w; |
|
X1 += w * (x0 + (x0 = x)); |
|
Y1 += w * (y0 + (y0 = y)); |
|
Z1 += w * (z0 + (z0 = z)); |
|
centroidPointCartesian(x0, y0, z0); |
|
} |
|
|
|
function centroidLineEnd() { |
|
centroidStream.point = centroidPoint; |
|
} |
|
|
|
// See J. E. Brock, The Inertia Tensor for a Spherical Triangle, |
|
// J. Applied Mechanics 42, 239 (1975). |
|
function centroidRingStart() { |
|
centroidStream.point = centroidRingPointFirst; |
|
} |
|
|
|
function centroidRingEnd() { |
|
centroidRingPoint(lambda00, phi00); |
|
centroidStream.point = centroidPoint; |
|
} |
|
|
|
function centroidRingPointFirst(lambda, phi) { |
|
lambda00 = lambda, phi00 = phi; |
|
lambda *= radians, phi *= radians; |
|
centroidStream.point = centroidRingPoint; |
|
var cosPhi = cos(phi); |
|
x0 = cosPhi * cos(lambda); |
|
y0 = cosPhi * sin(lambda); |
|
z0 = sin(phi); |
|
centroidPointCartesian(x0, y0, z0); |
|
} |
|
|
|
function centroidRingPoint(lambda, phi) { |
|
lambda *= radians, phi *= radians; |
|
var cosPhi = cos(phi), |
|
x = cosPhi * cos(lambda), |
|
y = cosPhi * sin(lambda), |
|
z = sin(phi), |
|
cx = y0 * z - z0 * y, |
|
cy = z0 * x - x0 * z, |
|
cz = x0 * y - y0 * x, |
|
m = sqrt(cx * cx + cy * cy + cz * cz), |
|
w = asin(m), // line weight = angle |
|
v = m && -w / m; // area weight multiplier |
|
X2 += v * cx; |
|
Y2 += v * cy; |
|
Z2 += v * cz; |
|
W1 += w; |
|
X1 += w * (x0 + (x0 = x)); |
|
Y1 += w * (y0 + (y0 = y)); |
|
Z1 += w * (z0 + (z0 = z)); |
|
centroidPointCartesian(x0, y0, z0); |
|
} |
|
|
|
export default function(object) { |
|
W0 = W1 = |
|
X0 = Y0 = Z0 = |
|
X1 = Y1 = Z1 = |
|
X2 = Y2 = Z2 = 0; |
|
stream(object, centroidStream); |
|
|
|
var x = X2, |
|
y = Y2, |
|
z = Z2, |
|
m = x * x + y * y + z * z; |
|
|
|
// If the area-weighted ccentroid is undefined, fall back to length-weighted ccentroid. |
|
if (m < epsilon2) { |
|
x = X1, y = Y1, z = Z1; |
|
// If the feature has zero length, fall back to arithmetic mean of point vectors. |
|
if (W1 < epsilon) x = X0, y = Y0, z = Z0; |
|
m = x * x + y * y + z * z; |
|
// If the feature still has an undefined ccentroid, then return. |
|
if (m < epsilon2) return [NaN, NaN]; |
|
} |
|
|
|
return [atan2(y, x) * degrees, asin(z / sqrt(m)) * degrees]; |
|
}
|
|
|